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A frequency method is proposed for solving the problem of the vibrations of shells of revolution taking into account the energy 

dissipation under arbitrary force loading and on collision with a rrgid obstacle. The Laplace transform is taken of the equation 

of the vibrations of a shell of revolution with non-zero initial conditions. For the inhomogeneous differential equation obtained, 

a variational method is used to solve the boundary-value problem, which consists of finding the Laplace-transformed boundary 

transverse and longitudinal forces and bending moments as functions of the boundary displacements. The equations of equilibrium 

of nodes, i.e. the corresponding equations of the finite-element method, are then compared, using results obtained earlier [l-4]. 

Amplitude-phase-frequency characteristics (APFCs) for the shell cross-sections selected are plotted. An inverse Laplace 

transformation is carried out using the clear relationship between the extreme points of the APFCs and the coefficients of the 

corresponding terms of the series in an expansion vibration modes (31. In view of the fact that the proposed approach is 

approximate, numerical testing is used. 0 2002 Elsevier Science Ltd. All rights reserved. 

The problem of the longitudinal vibrations of elastic rods of variable stepped cross-section on 
collision with a rigid obstacle was solved by a similar method in [5]. Below, unlike the procedure set 
out earlier in [5], the coefficients of the mass matrix and stiffness matrix are obtained from variational 
considerations. 

The equations of the dynamics of a linear viscoelastic system in operator form can be written as follows: 

azu 
Do+R~++=O. CD*.+C,D*$O (1) 

where o is the vector of generalized forces or the stress tensor, II is the vector of generalized displacements, 
R is the matrix of inertia characteristics or the specific mass, T is the matrix of external energy dissipation, 
f is the vector function of external loads, and C and C, are respectively the matrices or tensors of the 
constants of elasticity and coefficients of internal friction. 

We will take the boundary conditions in the form 

n,(3 = fs on S,, n,u = us on S, (2) 

where n, and II,, are the corresponding operators of static and geometric compatibility on the body 
surface, fS are the loads on the surface area St and us are the boundary displacements on S2. 

We will writethe compatibility conditions on the boundaries of the finite elements 

n,+b+ +n,_0_ = 0 on S{, n,+u+ = n,_u_ on S2 (3) 

Here, the plus and minus subscripts correspond to different sides of the interface of the elements 
S’ = s; us;. 

We will take the initial conditions in the form 

t=O:u=ao, &/&=a, (4) 

where a0 and a, are respectively the fields of the initial displacements and initial velocities. 
The operators D and D* are conjugate in the Lagrangian sense, i.e. 

; (DofudV = j cs ’ D*udV - j c&dS 
V s 

(5) 
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where crs = IZ,(J, us = n,u and Vis the volume of a finite element. In the general case, the boundary 
of an element S = S, u SZ u S; u S;. 

Operator equations (1) boundary conditions (2) and compatibility conditions (3) are valid for rods, 
plates and shells. The methods discussed here are therefore universal for all applied problems of linear 
viscoelasticity [6]. 

We will take the Laplace transform of Eqs (1) boundary conditions (2) and compatibility conditions 

(3) 

Do+R($ -pa, -a,)+T(pu-a~)-f=0, (C+C,p)D’u-C,D‘ao =cr (6) 

n,o=fs on S,, n,u=us on S, (7) 

n,+o+ + n,_B_ = n,d on S;, n,+u+ - n,_u_ = nuu’ = 0 on S; (8) 

where 

u = u(p), u(p) = 7 u(t)e-P’dt; G = o(p), o(p) = J a(t)e-Pfdr 
0 0 

The following theorem [3], extending the results of [l, 21 to problems of viscoelasticity, holds: the 
Laplace-transformed equations (6), boundary conditions (7) and compatibility conditions (8) for the 
generalized displacements and generalized forces of a viscoelastic body are equivalent to the condition 
for the following functional to be stationary: 

e(p)=;! [Do+p2Ru+pTu-2(f+pRuo+Ru,+Tuo)]‘udV+ 
V 

+ ; j o’(D*u - c*-’ ~--~C*~‘C,D*U~)~V+~ j (n,o-2fs)Tn,udS, - 
V 2 Sl 

(n,o)T( n,u - 2ux)dS2 + L 1 (nao’)TnUudS; - L j (n,o)Tn,u’dS; 
2 s; 2 s; 

(9) 

where C* = C + Cip and I/is the volume of the elements into which the body is divided. Here, the 
sign of summation over the elements is omitted. 

We will examine a single field of displacements. Following the variational method, we will seek a 
solution in the form 

u=x Pj”,9 d = c pjC*D*uj + C,D*uo (10) 
/ J 

Variations in u and o will have the form 

6~ = 1 GcljUj, 60= 1 6pJC*D*~j, h(p) = 7 6u(t)e-P’dr 

J i 0 
(11) 

where ui are the corresponding coordinate functions satisfying the compatibility conditions on the 
boundary of an element, and variation in K is understood in the sense indicated above. 

By varying functional (9) having satisfied the second of Eqs (6) i.e. the law of viscoelasticity, and 
satisfying the strain compatibility conditions on the boundary between the elements, taking into account 
relations (5) (10) and (11) we obtain 

] {(C*D*u-C,D*uo)T+[p2R u + pTu -(f + pRu, + Ru, + ~‘u~)]~)u~&’ - 
V 

- j fsTnUujdS, = 0, j = I,...,1 
SI 

(12) 

where 1 is the number of degrees of freedom of the finite element. 
Equation (12) is a generalized form of the equations of the finite-element method based on nodal 

displacements. The number of such equations is equal to the number of nodal displacements or, in other 
words, to the number of degrees of freedom N of the discrete model. 
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From Eq. (12) we obtain the corresponding expressions for elements of the stiffness, energy dissipation, 
mass and loading term matrices 

Cjj = J (CD*Ui)7D*ujdV, Clij = j (CiD’ui)TD*ujdV, Tj = j (T”i)7ujdV 
V V V 

Ri/ = J (Rui)7ujdV, fj = J (f + PRUO + Ru, + T’,)rUjdV+ 
V V 

+I (CD*~~)7D*ujdV+ j fluids, =fi(P)+f;j +f2jP 

V SI 

(13) 

where C is the matrix of the constants of elasticity 

bk 4cl 0 
,B,=b,p b, 0 , k=1,2 

00 - 
b ‘-p 

k 2 

b, = Eh b2 = Eh3 
I-p2 12(1 -p2) 

b, is the stiffness for tension, b2 is the cylindrical stiffness for bending, E is the modulus of elasticity, )I 
is Poisson’s ratio and h is the shell thickness. In the case of a shell of revolution, the form of the operators 
D and D* follows from equations given earlier (7, pp. 33 and 391. 

The operators D and D* possess the property 

(14) 

where I: is the shell surface, x7 = (Tt, T2, S, Ml, 442, H) is the vector of the forces, T,, Ml and T2, M2 
are the meridional and peripheral tensile forces and bending moments, S = Si2 -H2t/r2 = &t -H&r, 
H = (Htz + H&2, St2, Szl, HI2 and HZ1 are shear forces and torques, Nt is the transverse force per 
unit length of the parallel,yr = (u, u, w) is the vector of displacements, u is the displacement along the 
tangent to the meridian, u is the displacement along the tangent to the parallel, w is the normal 
displacement,& and y: are respectively the vectors of generalized forces and displacements on the edges 
of the element, rl and r2 are the principal radii of curvature of the shell, u is the radius of curvature of 
the parallel, a, and ok are respectively the initial and final values of the meridional arc coordinate of 
an isolated element with the surface X and a is an arc meridional coordinate. When evaluating integral 
(14), account is taken of the periodic@ with respect to angle 8. 

Equations (1) must be supplemented with the corresponding boundary conditions, which follow from 
the properties of the operators (14) 

+-lr, = fry Y& =ur (15) 

where I1 is the part of the contour where the forces are specified, and IZ is the part of the contour 
where displacements are specified. Division of the boundary contour into Ft and I2 is considered to 
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Fig. 1 

be nominal, since individual components of the vector of generalized forces and additional 
components of the vector of displacements can be specified on the same section. 

For a conical shell (Fig. l), where rt = M, under an axisymmetrical load, the quantity related to 
displacement II is not considered, and the operator D* and the matrix C are transformed into 

d/da 0 b, Ml 0 0 

D* = 
u-'cose 13-l sine 0 0 

0 -dZlda2 ,c=dlbl 0 0 b2 clbz 

0 -II-’ cos 0d I da 0 0 @2 62 

We will assume a field of displacements in the form 

U=P,+P2a, W=P3+P4a+Psa2+P6a3 

where PI, . . . . p6 are unknown coefficients. This concept may be justified by the fact that the equation 
of bending is only slightly related to the equation of extension [4]. 

We will find the form functions. They are defined by the relation [4] 

I U II /I II, 0 0 v, 0 0 

W = 0 I/, u3 0 u, r/, (‘i wi Yi ‘j wj Yj)’ /I 
where U,, . . . . U, are the form functions, and ui, w,, ‘/ij u,, wj and rj are the displacements and angles of 
rotation of the boundary cross-sections. 

We will introduce the variable a/L = a,, where L is the length of the element along the generatrix. 
Then 

U, =1-a,, U,=l-3af+2af, U,=L(a,-2aF+af) 

U4=a,, U,=3af-2af, U,=L(-af+af) 

- - 
Changing from a local system of axes (z,, z2, E) to a global system (X, Y, Z), we will express the vector 

y in terms of the matrix of the form functions U and the nodal displacements 

~~=(ui,wi,dwilda, u,,wi,dwjlda) 

From formulae (11) taking into account that T/corresponds to C, and dC = 27cvLdat, we obtain, for 
the stiffness and mass matrices, the expressions [8] 

c = 27rLAT i(D*“)T CD’Uvda, 
{ 0 1 

A, A 

c=A’C,A, E=ATRoA, i,j=l,..., 6 

A= 

sine -case 0 

M= case -sine 0 
0 0 1 
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To set up a system of equations, we will represent the stiffness matrix and the mass matrix divided 
into 3 x 3 blocks 

while the load vectorfr = (hj, fii). Then, for a shell we obtain the following recurrence relation 

(Bs-,s - w2m;_,,)Y’_, + [A,+ + $+,s - ~‘(m,q_,s + m;s+, NY’ + 

+ &,+I - m2mgsg+1 &+I = fg-lg + fgg+l + fg (16) 

where g is the number of the characteristic cross-section, fR is the load vector in cross-section g, and Yg 
and Y&t are the vectors of nodal displacements. 

According to Eq. (12), to take into account the energy dissipation, we will substitute for E the quantity 
E(1 + ioy), where y is the coefficient of internal energy dissipation, and, by solving system of equations 
(12) we plot the APFCs. A mathematical model of the shell of revolution is formed from the 
characteristic points of the APFCs in the form 

W(o) = z 4 
-T2c.02 +T .oi+l 

(17) 
i 21 ‘I 

k, =A;+, T2j=L, 
2j Olj 

where Aj is the vertical dimension of the APFC loop. 

Examples ofa rwnerical test. The following problem is examined: at a certain instant of time, a force q1 = 10 
kN/m begins to act on a conical shell (Fig. 1) with parameters 0 = 45”, L = 6 m, v(, = 20 m, h = 0.005 m, 
E = 2.1 x 10” N/m’, p = 0.3 and q = 100 N/m’; it is required to plot the transient with a single pulse and a stepped 
disturbance corresponding to the pressure indicated above. 

Solving Eqs (16) we plot the APFCs. Then, from formulae (17) we plot the transfer functions for the selected 
cross-sections of the shell. For the middle cross-section of the shell, in expansion (17) eight significant terms are 
obtained. The coefficients of these terms are given below 

j 1 2 3 4 5 6 7 8 

-k, x lo”, m3/N 12070 -1946 -9212 7828 5579 1277 1865 4444 

T,, x lo’, s 6531 5864 5165 4670 4221 3773 3519 2168 

T;, x lo’, s’ 6478 5846 5193 47.58 4289 3921 3562 2164 

Im u(o) x IO’, m 

0 
Re U(w) x t07,‘i 

Fig. 2 
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Fig. 3 

0 0.02 

Fig. 4 

I, s 0.04 

Figure 2 shows the APFCs plotted according to the system of equations (16) and formula (17) which 
are practically identical. The average error of the approximation amounts to less than 2%. 

Then, using the data given above, we plot the transient by means of the formula 

2k; 
u(x,f) = 4 ~exp(-q+)sin([+) wo 

5; =(4T;; -7;;)%, qj =$, rj = 
(4gj -T$,” 

21 
2T2’i 

The response of the system to a single impulse, according to formula (18), is shown in Fig. 3. The transient 
for a stepped force with zero initial conditions is plotted from the formula 

and is shown in Fig. 4. 
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Im UC01 x IO’. m 
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I I I 

-4 0 
Re U(W) x IO’, k 

Fig. 5 

Ux1d.m 

I 

0 

-I 

0 0.025 I. s 0.050 

Fig. 6 

The second problem is to investigate the dynamics of a conical shell when it collides with a rigid 
obstacle at 8 = 135”; the remaining parameters of the problem are the same as in the previous problem. 
The velocity of collision is 0.1 m/s. The edge of the shell in contact with the obstacle is rigidly clamped. 
The perturbing factor in the given case will be the quantity q = -If& where R is the mass per unit 
area of the middle surface. We plot the APFCs, from which a mathematical model of the shell of 
revolution when it collides with a rigid obstacle is formed. Here, as in the previous case, the average 
error of the approximation amounted to less than 2%. In the given case, seven terms of series (17) are 
significant, the coefficients of which are given below 

i 1 2 3 4 5 6 7 

4Cj X lo’*, m3/N 46340 1968 1609 849 161 2607 2406 
T~j X 109, S 12280 11020 9802 8686 7305 2618 2194 
T*,xlO' s* 21 ' 12400 11080 9816 8818 7747 2811 27820 

Figure 5 shows the APFCs of the shell (the continuous curves) and of the model (the dashed curve). 
The result of calculating the response of the system to an impulse is given in Fig. 6. 

The third problem differs from the second only in that, after collision, the shell rebounds from the 
obstacle. Having plotted the APFCs, we set up a mathematical model of the shell of revolution when 
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Im U(w) x 106, m 

-I 0 1 
Re U(w)x I@, m 

Fig. 7 

ux 106, m 

0.05 

Fig. 8 

it collides with a rigid obstacle. The error of the approximation is 2%. Here, six terms of the series (17) 
are significant, and their coefficients are given below 

j 1 2 3 4 5 6 

kj X lo”, m3/N 29070 4242 3255 1840 445 24570 

Tjj X 109, S 11620 10170 9293 7793 6874 6499 

T$ X 10’7 S* 11640 10310 9203 8351 7577 6591 

Figure 7 shows the APFCs of the shell and of the model, which are practically identical. The result 
of calculating the response of the system to an impulse is given in Fig. 8. 

From the transients it is possible to find the maximum amplitude A,,, and the static amplitude Ast, 
from which, using the formula K* = Amax/& we find the transmission coefficient. Then, finding the 
static stress, ost, by means of the formula K*crst = cr,,, we have the maximum stress in the cross-section 
considered. The given solutions hold for any energy dissipation, including the case when y = 0, when 
semiharmonic undamped vibrations are produced and the solution holds for any time intervals, i.e. for 
hundreds or thousands of cycles. Like the previous method, the procedure described enables us to 
investigate the vibrations of shells with any sudden jumps in pressure and to investigate the acoustic 
vibrations of the shell. 

When considering shells of revolution of variable curvature, when rl = r,(0), such a shell can be 
approximated using conical finite elements with different angles 8. 
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